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ABSTRACT  

In this paper we introduce the concept of continuous quantification of uniqueness. Our approach is to construct an 
algorithm that computes a fuzzy set membership function,  which given any inter-object dissimilarity metric and it's 
variability, measures the probability that an entity of interest will not be confused with other similar entities in a search 
space. We  demonstrate use of this algorithm by applying it to stereoscopic computer vision, in order to identify which of 
several sub-problems pertaining to solution of the classic stereoscopic correspondence problem are least likely to be 
solved incorrectly, and hence are most well suited to greatest confidence first approaches. 
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1. INTRODUCTION 

Suppose a manufacturer mails a variety of acoustic musical instruments to a store that is located several thousand miles 
away, and along with each one, includes a compact disc that contains an audio recording of that specific instrument 
being played by a famous and talented musician. During transit the recordings somehow get separated from the 
instruments and all paperwork, packaging, or markings that could be used to re-unite them is damaged or lost.  A clerk at 
the store is faced with the task of deciding which instruments to attempt to hastily re-unite with their audio recordings  in 
preparation for an imminent trade show, by comparing how they sound when he plays them to how each of the audio 
recordings sound. Which instruments should he focus on if it is his goal to minimize the likelihood that he will make a 
mistake? One strategy could be, to focus on those instruments that have the most unique timbres. For example if the 
shipment contains 20 violins but only one cow bell, it is unlikely that he will fail to pair up the cow bell with the correct 
audio recording.  How unusual of a timbre is sufficiently unusual in order for him to succeed? That depends not only on 
how similar the timbres of the instruments in the shipment are to each other, but also, on the variability of each 
instrument’s timbre as a function of who is playing it,  temperature, humidity,  the impact of a long journey in a shipping 
container,  and how adept the clerk or the diagnostic equipment available to him are at producing dissimilarity estimates 
with low variability when repeatedly comparing two identical signals. If there were no such sources of variability, even 
very minor differences between timbres of instruments in the shipment would suffice to ensure success. On the other 
hand,  even if all such sources of variability were completely absent, if  two of the  instruments had identical timbres, the 
probability of correctly re-uniting them with their factory audio recordings would be merely 1/2. 

The above discussion presents a specific instance of a general problem, comprised of needing to decide which of several 
equally effective objects to use, for a purpose that requires recognition of the chosen object in different environments 
that contain objects with which it could be confused, by performing comparisons using a metric that relies on properties 
whose measurements do unfortunately contain a lot of environment dependent variability.

In this paper we propose a strategy for solving such problems. It is comprised of deciding to use those objects that are 
deemed most unique by a measure we introduce in the next section.  Here is a one sentence summary of what that 
measure does: The measure deems an object to be highly unique if and only if the distribution of differences between 
repeated measurements of the object’s properties does not substantially overlap distributions obtained by subjecting the 
objects with which it could be confused to the same procedure.

We empirically assessed the effectiveness of this uniqueness quantification measure by examining it’s ability to predict   
the circumstances in which some very basic and widely used stereoscopic vision techniques compute correct matches, 
and the circumstances in which they compute matches that regardless of whether or not they are correct, are useful, in 
the sense that they are compatible with the Epipolar Constraint1,2,8. 
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2. PROPOSED UNIQUENESS QUANTIFICATION MEASURE

2.1 Definition 

Let x denote an object of interest, whose uniqueness we want to assess by comparing it to other objects in a search space 

S  using a metric d .   Assume that the search space S contains x .   We define the uniqueness U(x)  of  x  in the search 

space S with respect  to the metric d as: 

U(x) = 1/ (1+ Area(H (agm)
aj S

aj agm

H (aj)) / Area(H (agm)))                                                                               (1)

where a1  through ak denote k  objects that comprise the search space S and  agm denotes any fixed but arbitrary 

element of  the search space S at which d(agm,x)  is equal to the global minimum of the values {d(aj,x)  }. (Usually 

the global minimum occurs at only one location in the search space, but that is not guaranteed to always be the case, and 

would most certainly not occur if the output of the metric d were constant. The latter could happen if all of the objects 

involved were  identical and the act of measuring them were completely free of variability  ) 

In the musical instrument example, a1  through ak  could denote the musical instruments that were in the shipment that 

was received by the music store clerk and x could denote one of those instruments whose identity the clerk does not 

know, that was used to produce a specific factory audio recording. The metric d could be an algorithm that compares 

audio recordings that were shipped to the store, to audio recordings of the shipped instruments that were produced by the 

clerk in the store. Given these conventions, whenever the clerk evaluates d(aj,x)  he is comparing the sound of an 

instrument  aj   that he has chosen from the shipment, to the sound of an instrument x whose identity he is attempting to 

discover, and which he selected implicitly when he decided to compare a specific factory audio recording to a recording 

of aj  that he made in the store. For all he knows, x and  aj  may very well be the same instrument.

For each object aj ,  H (aj) denotes a histogram of the values that can be obtained by repeatedly using the metric d to 

compare each of many measurements of aj that are obtained in various environments of interest, to each other.  The 

histograms pertaining to objects  that comprise the search space S need to be comparable to each other, so, either they 

need  to be normalized, or they each need to have been created using contributions from precisely the same number of 

measurements. 

In the musical instrument example, each H (aj) needs to include numerous dissimilarity measurements obtained by 

comparing recordings of the instrument aj  that were made in the store by the clerk, to recordings of the musical 

instrument aj  that were made at the factory when it was played by a talented and famous musician.  H (aj) denotes an 

entity that is only theoretically obtainable. It could be estimated by repeatedly sending identical sets of instruments and 

recordings of those instruments,  to the clerk without allowing the recordings to become disassociated from the 

instruments during shipping, however it is not a quantity that the clerk can possibly compute after having received only 

one shipment in which the correct matching between factory audio recordings and shipped instruments has been lost.  

Fortunately, as suggested by empirical evidence presented later in this paper,  it is expected the clerk can productively 

harness the uniqueness quantification measure  U  by very crudely estimating the histograms H (aj) using information 

that is available to him. 

Area(H (agm)) represents the area of the histogram H (agm)   

Area(H (agm) H (aj))  represents the area  of the intersection of the histograms H (agm)  and H (aj)

To facilitate theoretical analysis we also present an alternative definition of U(x) that is comprised of the formula which 

is obtained by replacing all of the histograms that appear in equation (1) above, with the probability distributions that 

best describe them, the intersection of any two histograms with a function that assigns to each point x, the minimum of 

D1(x) and D2(x) ,  where D1 and D2 denote the probability distributions that have replaced those histograms, and the 

area  computing operation with integration. When taking this latter approach Area(H (agm) H (aj)) is replaced by 

the integral of the minimum of the two distributions that best describe the histograms H (agm)  and H (aj) , and 

Area(H (agm))  is replaced by the value 1.0. 
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2.2 Properties

The uniqueness quantification measure U  has the following properties:

The outputs it produces are real numbers that are greater than 0 and less than or equal to 1.  

If  d looks like an inverted impulse function, for example if d(agm,x)  is a small value, and all of the other d(aj,x)  are 

large, in the  sense that the histograms H (agm)  and  H (aj)  do not  intersect as long as agm is not aj   , then U(x) = 

1.0  which we interpret as meaning that  x  is highly unique in the search space S with respect to the metric d.

If  d  looks like a sum of a finite number of inverted impulse functions, for example if  n of  the d(aj,x) are all equal to 

the same value d(agm,x)  and and the remaining d(aj,x)  are large in the sense that their associated histograms do not 

intersect H (agm)  at all, then it is likely that U(x)  will be equal to a value that is close to 1 / n  . Furthermore, if the 

histograms H (agm) and each of the H (aj)  all have the exact same shape and size and if the values d(agm,x)  and 

each of the  d(aj,x) are in fact the means of those histograms, then  U(x)  will be equal to 1 / n .   

A direct corollary of the above property is that if d looks like a constant function then U(x) approaches 0 as the number 

of elements in S approaches infinity.  We interpret values of U(x)  that are close to zero as indications that x  is not at 

all unique in the search space S with respect to the metric d.

If  an object agm  is very different from each element aj of a collection of objects { aj }, in the sense the histogram  

H (aj)  does not intersect H (agm) and the objects { aj } change, but not enough to eliminate this absence of 

intersections,  then the value of U(x) remains unchanged. In summary the  uniqueness of an object is not impacted by 

changes in it’s similarity to other objects that are, and after the change continue to be, very different from it. 

3. APPLICATION TO STEREOSCOPIC VISION

3.1 Overview

Next, we present an example that illustrates how to apply the above described uniqueness quantification measure, to the 
classic stereoscopic vision correspondence problem, and begin by providing a brief overview of what that problem is.

Given two images of the same scene taken from slightly different points of view, for each pixel in one image,  the goal is 
to find the pixel in the other image, which corresponds to it in the sense that photons which contributed to creation of 
those pixels originated from the same small volume of space. Here the term “small volume of space” describes that small 
volume of space containing opaque or at least translucent matter with which photons collided immediately prior to 
colliding with the sensor arrays ( for example retinas or CCDs) that captured the images,  rather than a small volume of 
space containing original sources of photons (for example portions of light-bulbs or the sun) . Each of the above 
described pixel specific problems is called a single point correspondence problem, and the union of these sub-problems 
is called the correspondence problem. Since as a function of changing point of view, images of distant objects move 
more slowly across a camera’s sensor array than images of objects that are close to the camera,  solution to the 
correspondence problem is all that is needed in order to determine which of any two pixels represents matter that is 
further from the camera,  in other words,  to perceive depth. Due to occlusions (which due to parallax are not guaranteed 
to be the same in both images) it is not always possible to obtain such knowledge.  Any pair of images, of the above 
described variety,   is called a stereogram,  and since it can be shown that it is possible to construct stereograms which 
equally well describe more than one spatial matter distribution, all algorithms focused on solving the correspondence 
problem must at least implicitly engage in some sort of judicious guessing,  that is not  guaranteed to succeed. The 
empirical success of the human stereoscopic vision system does however guarantee that there exist algorithms which 
will almost always guess correctly when processing real world images, rather than pathological contrived counter-
examples. To date, a large number of algorithms that do a good job solving this problem have been developed,  however 
none are perfect. Scharstein and Szeliski12 provide an extensive taxonomy that summarizes and compares many of them.

We applied uniqueness quantification to the stereoscopic vision correspondence problem by using it to decide which of 

many single point correspondence problems were least likely to be solved incorrectly.   For each small volume of space 

x that pertained to a single point correspondence problem, our estimate of U(x)made use of a metric d that compared 

the image of x in one photograph, to  images in a different photograph taken from a slightly different point of view, of 

elements of a set (of small volumes of space a1  through ak  ) that was likely to contain x .
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We present continuous quantification of uniqueness neither as a stand alone algorithm for solving the stereoscopic vision 
correspondence problem, nor as an alternative intended to replace other techniques, but rather, as yet another addition to  
a collection of basic techniques (which include bidirectional matching and occlusion detection15, automated computation 
of the Epipolar Constraint1,2,8 from image data and its application to image rectification, a variety of image subset 
comparison metrics5, multi3 resolution processing, extraction of edges through multi scale LOG3 filtering, cooperative9,15 
processing, and dynamic6 image data driven adjustment of the size of the area that is scrutinized by image subset 
comparison metrics) which can each fail to produce correct matches when used alone, but which together can, when 
judiciously combined, be used to greatly reduce the incidence of errors in solutions to correspondence problems 
pertaining to stereograms that are devoid of unusual pathologies. 

3.2 Experimental assessment of uniqueness quantification efficacy pertaining to prediction of compatibility of 
computed matches with the Epipolar Constraint

Although all correct matches comply with the Epipolar Constraint,  matches do not need to be correct in order to  do so. 
Matches which are Epipolar Constraint compliant are legitimate descriptions of actual locations in space.  Whether or not 
those matches are correct depends on whether or not matter that is visible to the cameras that captured a stereogram 
actually exists at those locations. Regardless of whether or not Epipolar Constraint compliant matches are correct, they 
are useful in the sense that they can provide builders of stereo rigs that are equipped with independently rotating cameras 
with the raw data that is needed for computation of the Epipolar Constraint.  Faugeras, Luong and Maybank 1,2,8 
described robust techniques for accomplishing this even if a small fraction of the matches used as inputs are incorrect.  
We regard uniqueness quantification as a way to provide their technique with a way to enhance screening of matches that 
are used as input data ,either to improve accuracy or reduce computational burden. 

Our empirical assessment of the effectiveness of the uniqueness quantification measure U included execution of one 

hundred repetitions, of eight experiments, for each of three un-rectified stereograms (depicting a chess set, a fern, and a 
park using 320x240 pixel images), pertaining to which ground truth disparity was not known.   

Each experiment began by randomly choosing a collection of single point correspondence problems. This was done by 
choosing 900 locations in one of the two images that comprise a stereogram. For some of the experiments the choices of 
locations were completely random, and for others they were randomly chosen locations on edges. Edges were computed 
merely by subtracting the image from a version of itself that was shifted both vertically and horizontally by one pixel (a 
crude but computationally efficient approximation to LOG filtering) and selection of edge resident locations was carried 
out randomly, by repeatedly raster scanning the entire edge map and if edge map brightness exceeded a very high 
threshold, using a random number generator to decide whether or not that location would be included. After each such 
pass over the entire edge map, the threshold was decreased, thereby providing less intense edge resident locations with 
an opportunity to be included. Our intent was to ensure that edge resident locations everywhere in the image had an 
opportunity to participate and that the most well defined edges would be favored but not exclusively.

In each experiment an attempt was made to compute a bidirectional match for each location in the above described data 
set, using the  SAD (Sum of Absolute Value of Differences)5 metric to compare a rectangular image subset centered on 
each pixel in one image for which a match was sought, to a subset having the same size and geometry and centered on 
any pixel in another image that was being evaluated as a candidate match.  Like our choice of edge extraction technique, 
SAD is not the most sophisticated available tool, but it is not computationally demanding ,  has been widely studied,  and 
performs well especially when used in conjunction with bidirectional matching.  The sizes of pixel neighborhood image 
subsets (a.k.a “image patches”),   that were compared by SAD in any one experiment were all identical.  Experiments 
using 3x3, 5x5, 7x7, and 17x17 pixel neighborhoods were carried out.  

In each experiment, the uniqueness of each bidirectional match was assessed as follows: The metric d was assumed to be 

SAD applied to image patches and configured in one of the specific above described ways.  We very crudely 

approximated H (agm) by an isosceles triangle whose base and height were both equal to d(agm,x)  and whose 

maximum value occurred at the location d(agm,x) . Even more crudely we approximated each H (aj) by an isosceles 

triangle whose width and height were also equal to d(agm,x) ,  but whose maximum value was located at  d(aj,x) . 

Note that this latter simplification implies that it is highly likely that a different estimate of H (aj)  will be used by each 

single point correspondence problem specific uniqueness assessment, and that the resulting uniqueness assessments are 

therefore not as comparable to each other as they would be if a more computationally intense  approach were taken in 

which results obtained from an attempt to find a match for each specific aj were used to guide estimation of  H (aj) .
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The uniqueness of each bidirectional match, was set equal to the minimum of the uniqueness measures computed for 
each direction of search. These two values were often comparable, but not always.  Such sporadic asymmetry, was also 
displayed by the magnitudes of the SAD global minimums associated with the two directions of search.  As long as a 
match turned out to be bidirectional, it was included in subsequent processing, regardless of differences between the 
magnitudes of computed uniquenesses or SAD global minimums associated with the two directions of search.

As demonstrated by data presented in the results section, it turned out that uniqueness quantification provided useful 
information in spite of the egregiously crude approximations described above, and this suggests that an opportunity to 
improve it’s performance by using more refined estimates of the quantities it requires, still exists. 

For each experiment, compliance of bidirectional matches ( obtained by performing two dimensional search of un-
rectified images,) with a pre-computed Epipolar Constraint was assessed for both a test group and a control group. The 
control group was comprised of all bidirectional  matches whose uniquenesses did not exceed mean uniqueness by more 
than a multiple of one standard deviation, and the test group was comprised of those bidirectional matches that did. 
Various multiples were tried, and resulting outcomes are presented in this paper’s results section.

3.3 Experimental assessment of uniqueness quantification efficacy pertaining to prediction of computed disparity 
correctness

Our empirical assessment of the effectiveness of the uniqueness quantification measure U also included execution of one 
hundred repetitions, of eight experiments, for each of three of Scharstein, Pal and Hirschmuller’s half size rectified 
stereograms4,11  (depicting art, laundry, and a Moebius strip,  whose images we cropped to a size of 640x480 pixels),  and 
pertaining to which Scharstein et all published ground truth disparity information4,11 computed using a structured 
lighting technique13 developed by Scharstein and Szeliski.  These latter experiments differed from those described in the 
above section in only two respects: First, the success criterion (rather than being defined as compliance with the Epipolar 
Constraint,) was defined to be correctness of match, assessed by comparing computed matches to Scharstein et all’s 
published ground truth data4,11.  Second, search spaces were defined to be one dimensional subsets of corresponding 
Epipolar Lines1,2,8 (which were all horizontal and parallel to each other since the images being processed were rectified 
images). 

3.4 Results

Each screenshot depicted in Figures 1 through 6 below, graphically presents results we obtained from one iteration of 
one of the above described experiments.  Except for the Chess and Fern stereograms, all of the images we experimented 
with were in color. The screenshots present grayscale renditions of those images in order to make perception of 
computed bidirectional matches (represented by colored plus signs superimposed onto images) more easy. Although 
evaluation of compliance with success criteria was objective and carried out computationally using software, some 
readers of this paper might enjoy subjectively assessing correctness of bidirectional matches presented in our screenshots 
and/or their compliance with the Epipolar Constraint by crossing their eyes, and fusing stereograms to perceive three 
dimensional surfaces. Correct matches will be perceived as plus signs painted onto surfaces,  incorrect matches that are 
compatible with the Epipolar Constraint will be perceived as plus signs either floating in mid air or embedded in  the 
interiors of solid objects, and incorrect matches that are incompatible with the Epipolar Constraint will be perceived as 
sources of eye strain.    Readers who are viewing an electronic color version of this paper may be interested to know that 
the color of each pair of corresponding plus signs communicates some additional potentially interesting but nonessential 
information, namely the uniqueness of each presented match using the following conventions:

0.99  green  1,  0.40 white < 0.99,  0.20  yellow < 0.40,  0.05  purple < 0.20,  0 < red  0.05

Each row of  Tables 1, 2 and 3 that are presented after the screenshots, summarizes results obtained from 100 repetitions 
of one experiment.  A key documenting the precise meaning of each column in those tables, appears at the end of this 
section.
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Figure 1. Outcome of 1 iteration of experiment with Chess stereogram, randomly chosen locations, and 7x7 pixel SAD

Figure 2. Outcome of 1 iteration of experiment with Fern stereogram, randomly chosen edge locations, and 7x7 pixel SAD
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Figure 3. Outcome of 1 iteration of experiment with Park stereogram, randomly chosen edge locations, and 3x3 pixel SAD

Figure 4. Outcome of 1 iteration of experiment with Art stereogram, randomly chosen locations, and 7x7 pixel SAD
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Figure 5. Outcome of 1 iteration of experiment with Laundry stereogram, randomly chosen locations, and 3x3 pixel SAD

Figure 6. Outcome of 1 iteration of experiment with Moebius stereogram, randomly chosen locations, and 3x3 pixel SAD
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Table 1.   Empirical assessment of the usefulness of uniqueness quantification for predicting whether or not computed 
matches comply with the Epipolar Constraint.

Stereogram Success Criterion = 
compatibility with

Search 
Space

Location 
Selection

Patch 
Size

Mean 
Control 
Group 
Size

Mean  
Control 
Group 

Success 
Rate

Control 
Group 

Success 
Rate 
Stdev

Uniqueness 
Boundary 

Between Test 
Group And 

Control Group

Mean 
Test 

Group 
Size

Mean 
Test 

Group 
Success 

Rate

Test 
Group 

Success 
Rate 
Stdev

Fern Epipolar Constraint 2D rand 3x3 226.57 78.49% 2.52% 1.0 U +μU 25.59 85.46% 7.17%

Fern  Epipolar Constraint 2D rand 5x5 200.53 83.00% 2.5% 1.0 U +μU 15.81 97.91% 3.43%

Fern Epipolar Constraint 2D rand 7x7 194.54 86.90% 2.45% 1.0 U +μU 16.34 99.78% 1.1%

Fern Epipolar Constraint 2D rand 17x17 255.41 95.69% 2.11% 1.0 U +μU 19.77 99.82% 0.91%

Fern Epipolar Constraint 2D rand-edg 3x3 272.55 87.12% 1.61% 1.0 U +μU 44.82 96.88% 2.44%

Fern Epipolar Constraint 2D rand-edg 5x5 277.12 92.83% 1.84% 1.0 U +μU 40.64 99.34% 1.27%

Fern Epipolar Constraint 2D rand-edg 7x7 281.05 93.63% 1.33% 1.0 U +μU 46.99 100% 0%

Fern Epipolar Constraint 2D rand-edg 17x17 372.49 97.16% 0.69% 1.0 U +μU 47.56 100% 0%

Chess Epipolar Constraint 2D rand 3x3 203.79 80.39% 2.77% 1.0 U +μU 27.09 92.92% 4.59%

Chess Epipolar Constraint 2D rand 5x5 218.69 88.26% 2.14% 1.0 U +μU 27.89 99.77% 0.77%

Chess Epipolar Constraint 2D rand 7x7 241.60 91.83% 1.66% 1.0 U +μU 30.11 100% 0%

Chess Epipolar Constraint 2D rand 17x17 322.90 96.99% 2.19% 1.0 U +μU 38.86 99.92% 0.83%

Chess Epipolar Constraint 2D rand-edg 3x3 262.82 88.43% 1.51% 1.0 U +μU 46.92 99.37% 1.05%

Chess Epipolar Constraint 2D rand-edg 5x5 322.91 92.80% 1.02% 1.0 U +μU 47.89 99.86% 0.51%

Chess Epipolar Constraint 2D rand-edg 7x7 362.73 94.53% 1.23% 1.0 U +μU 51.25 100% 0%

Chess Epipolar Constraint 2D rand-edg 17x17 370.13 98.50% 0.5% 1.0 U +μU 65.82 100% 0%

Park Epipolar Constraint 2D rand 3x3 305.93 70.14% 3.04% 1.0 U +μU 32.41 89.95% 5.34%

Park Epipolar Constraint 2D rand 5x5 344.71 87.30% 1.78% 1.0 U +μU 33.7 99.88% 0.61%

Park Epipolar Constraint 2D rand 7x7 406.11 93.80% 1.79% 1.0 U +μU 40.28 99.84% 1.56%

Park Epipolar Constraint 2D rand 17x17 579.07 99.28% 0.33% 1.0 U +μU 46.44 100% 0%

Park Epipolar Constraint 2D rand-edg 3x3 254.72 81.53% 2.28% 1.0 U +μU 30.45 91.58% 4.35%

Park Epipolar Constraint 2D rand-edg 5x5 269.72 91.82% 1.33% 1.0 U +μU 30.29 100% 0%

Park Epipolar Constraint 2D rand-edg 7x7 303.82 93.86% 1.03% 1.0 U +μU 29.77 100% 0%

Park Epipolar Constraint 2D rand-edg 17x17 463.78 99.72% 0.22% 1.0 U +μU 33.34 100% 0%

The time required to perform one iteration of each of the above described experiments (using an Apple Macintosh 
laptop) increased substantially as a function of patch size. Approximate durations per experiment were less than 1 second 
when using 3x3 pixel neighborhoods, 2 seconds when using  5x5 pixel neighborhoods, 3 seconds when using 7x7 pixel 
neighborhoods, and 20 seconds when using 17x17 pixel neighborhoods. 

The combination of this latter fact with the above presented data suggests that uniqueness quantification can be used 
either to reduce error rates, or if a certain rate of error is acceptable, to reduce the computational burden that must be 
incurred to achieve that rate. 
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Table 2.   Empirical assessment of the usefulness of uniqueness quantification for predicting whether or not computed 
matches are correct

Stereogram Success Criterion = 
Compatibility With:

Search 
Space

Location 
Selection

Patch 
Size

Mean 
Control 
Group 
Size

Mean  
Control 
Group 

Success 
Rate

Control 
Group 

Success 
Rate 
Stdev

Uniqueness 
Boundary 

Between Test 
Group And 

Control Group

Mean 
Test 

Group 
Size

Mean 
Test 

Group 
Success 

Rate

Test 
Group 

Success 
Rate 
Stdev

Art ground truth disparity 1D rand 3x3 267.14 44.47% 2.82% 1.0 U +μU 50.53 82.26% 4.98%

Art ground truth disparity 1D rand 5x5 284.86 53.55% 2.61% 1.0 U +μU 55.24 85.32% 4.49%

Art ground truth disparity 1D rand 7x7 298.07 57.2% 2.96% 1.0 U +μU 59.79 84.8% 4.93%

Art ground truth disparity 1D rand 17x17 316.48 52.27% 2.69% 1.0 U +μU 50.76 83.44% 4.8%

Art ground truth disparity 1D rand-edg 3x3 363.03 38.63% 2.36% 1.0 U +μU 69.33 48.49% 5.48%

Art ground truth disparity 1D rand-edg 5x5 385.91 46.85% 2.08% 1.0 U +μU 68.78 55.47% 5.43%

Art ground truth disparity 1D rand-edg 7x7 392.75 49.17% 2.20% 1.0 U +μU 61.24 58.14% 6.07%

Art ground truth disparity 1D rand-edg 17x17 350.04 43.25% 2.59% 1.0 U +μU 65.84 58.36% 5.4%

Laundry ground truth disparity 1D rand 3x3 233.52 30.73% 3.3% 1.0 U +μU 44.16 70.67% 6.49%

Laundry ground truth disparity 1D rand 5x5 256.86 39.68% 2.99% 1.0 U +μU 49.46 72.12% 6.24%

Laundry ground truth disparity 1D rand 7x7 279.88 44.33% 2.95% 1.0 U +μU 52.33 72.32% 6.18%

Laundry ground truth disparity 1D rand 17x17 400.01 50.84% 2.28% 1.0 U +μU 63 70.89% 5.54%

Laundry ground truth disparity 1D rand-edg 3x3 271.71 17.27% 2.03% 1.0 U +μU 42.19 31.96% 6.39%

Laundry ground truth disparity 1D rand-edg 5x5 282.46 21.31% 2.05% 1.0 U +μU 44.28 37.83% 6.11%

Laundry ground truth disparity 1D rand-edg 7x7 300.32 24.33% 2.25% 1.0 U +μU 50.21 37.23% 6.99%

Laundry ground truth disparity 1D rand-edg 17x17 434.61 36.9% 2.09% 1.0 U +μU 73.4 44.38% 5.33%

Moebius ground truth disparity 1D rand 3x3 383.35 69.52% 2.11% 1.0 U +μU 75.55 91.19% 3.73%

Moebius ground truth disparity 1D rand 5x5 444.45 75.01% 1.96% 1.0 U +μU 84.88 93.85% 2.47%

Moebius ground truth disparity 1D rand 7x7 476.85 76.3% 1.66% 1.0 U +μU 88.09 95.15% 2.38%

Moebius ground truth disparity 1D rand 17x17 530.78 74.4% 1.56% 1.0 U +μU 92.24 96.93% 1.65%

Moebius ground truth disparity 1D rand-edg 3x3 393.65 61.58% 2.15% 1.0 U +μU 156.9 79.53% 2.51%

Moebius ground truth disparity 1D rand-edg 5x5 466.31 66.09% 2% 1.0 U +μU 110.8 84.6% 2.64%

Moebius ground truth disparity 1D rand-edg 7x7 501 66.45% 1.6% 1.0 U +μU 89.12 89.71% 3.18%

Moebius ground truth disparity 1D rand-edg 17x17 537.22 63.85% 1.77% 1.0 U +μU 73.99 75.17% 4.38%

The data in Table 2 above suggests that unlike for the case of compliance with the Epipolar Constraint described in Table 
1, correctness of match comparable to that obtainable by quantifying uniqueness can not easily be obtained merely by 
increasing patch size.  

This is not surprising since for many popular metrics, like SAD5, SSD5, and Normalized Cross Correlation5, a very large 
pixel neighborhood can in certain situations, have a high likelihood of producing matches that conform to the Epipolar 
Constraint,  but are incorrect. Consider for example the case of attempting to find a match for a pixel that represents a 
very small object in the foreground, (for example a gnat which is close to cameras that are capturing the stereograms 
being processed) , against a more distant flat background (for example a billboard depicting a vegetable garden) for 
which, due to its highly unique pixel neighborhoods, and lack of depth discontinuities and associated occlusions,  it is 
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very  likely that correct disparities will be computed. When using a large pixel neighborhood (like for example 17x17) 
the contribution to image subset dissimilarities computed by metrics like SAD, that is made by the comparatively small 
set of pixels which represent the small object (like the gnat), can easily be overwhelmed by the substantially larger set of 
contributions from pixels representing  the more distant background (like the billboard). The net effect is that an effort 
focused on finding a match  for a small foreground object (like the gnat), ends up finding a match for a location on the 
more distant large object (like the billboard). As we suggested before, this is not a problem if the goal is merely to 
produce input data for an Epipolar Constraint computation. If however the goal is to combine uniqueness quantification 
with knowledge of an Epipolar Constraint that has already been computed,  in order to attempt to correctly solve all 
single point correspondence problems pertaining to a stereogram,  then there can exist a reason other than mere 
avoidance of  large computational expenditure, to use pixel neighborhoods that are as small as possible.

Table 3.  Impact of choice of Uniqueness boundary between test group and control group

Stereogram Success Criterion = 
Compatibility With:

Search 
Space

Location 
Selection

Patch 
Size

Mean 
Control 
Group 
Size

Mean  
Control 
Group 

Success 
Rate

Control 
Group 

Success 
Rate 
Stdev

Uniqueness 
Boundary 

Between Test 
Group And 

Control Group

Mean 
Test 

Group 
Size

Mean 
Test 

Group 
Success 

Rate

Test 
Group 

Success 
Rate 
Stdev

Moebius ground truth disparity 1D rand 3x3 75.6 43.45% 5.75% -1.0 U +μU 383 78.91% 2%

Moebius ground truth disparity 1D rand 3x3 122.25 50.29% 4.6% -0.8 U +μU 335.5 81.42% 2.13%

Moebius ground truth disparity 1D rand 3x3 164.18 53.95% 3.78% -0.6 U +μU 296.4 83.53% 2.19%

Moebius ground truth disparity 1D rand 3x3 200.4 57.64% 3.58% -0.4 U +μU 256.6 85.17% 2%

Moebius ground truth disparity 1D rand 3x3 234.48 60.4% 3.18% -0.2 U +μU 227.2 86.15% 2.44%

Moebius ground truth disparity 1D rand 3x3 264.15 62.77% 2.93% 0.0 U +μU 198.1 87.22% 2.65%

Moebius ground truth disparity 1D rand 3x3 289.57 64.22% 2.48% 0.2 U +μU 171.1 87.63% 2.56%

Moebius ground truth disparity 1D rand 3x3 312.16 65.98% 2.82% 0.4 U +μU 147.5 88.81% 2.62%

Moebius ground truth disparity 1D rand 3x3 343.36 67.29% 2.4% 0.6 U +μU 117.5 89.93% 2.81%

Moebius ground truth disparity 1D rand 3x3 366.64 68.4% 2.39% 0.8 U +μU 93.7 90.85% 3%

Moebius ground truth disparity 1D rand 3x3 384.67 69.21% 2.34% 1.0 U +μU 75.11 91.43% 2.7%

Moebius ground truth disparity 1D rand 3x3 397.42 70.03% 2.21% 1.2 U +μU 60.24 92.61% 3.42%

Moebius ground truth disparity 1D rand 3x3 414.74 70.84% 2.39% 1.4 U +μU 46.43 92.82% 3.47%

Moebius ground truth disparity 1D rand 3x3 417.77 71.21% 2.26% 1.6 U +μU 42.46 92.05% 4.14%

Moebius ground truth disparity 1D rand 3x3 418.23 71.34% 2.27% 1.8 U +μU 43.63 92.37% 3.59%

Moebius ground truth disparity 1D rand 3x3 416.38 71.44% 2.18% 2.0 U +μU 42.75 93.31% 4.25%

The data presented in the three preceding tables (specifically the differences between Mean Test Group Success Rate, 
and Mean Control Group Success Rate)  suggests that uniqueness quantification can provide tangible benefits. 

Examination of how the difference between Mean Control Group Size, and Mean Test Group Size varies across the rows 
of Table 3 suggests that when uniqueness quantification is used to filter out all but the most unique matches,  the resulting 
data set has a relatively high probability of containing correct matches, but contains few elements.  When however 
uniqueness quantification is used to filter out all but the least unique matches, it still eliminates many incorrect matches  
yet does not decrease the size of the resulting data set substantially more than a widely used technique like bidirectional 
matching.  
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In each of the above tables: 

1.The Stereogram column describes to which stereogram each row of data pertains. 
2.The Success Criterion = Compatibility With: column describes whether success was defined as compliance of 
computed matches with the Epipolar Constraint, or agreement of computed matches with  Scharstein et all’s ground truth 
disparity data4,11. 
3.The Search Space column describes whether the Epipolar Constraint was used to constrain bidirectional search to a 
one dimensional image subset (indicated by 1D) or whether the search process did not make use of the Epipolar 
Constraint (indicated by 2D). 
4.The Location Selection column describes whether matches were sought for 900 locations selected completely at 
random ( indicated by rand), or for 900 randomly selected locations on image edges (indicated by rand-edg). 
5.The Patch Size column describes the sizes in pixels of image subsets that were compared by SAD when bidirectional 
matches were computed. 
6.The Mean Control Group Size column describes the average (across 100 experiment repetitions) number of the 900 
randomly selected locations that met the inclusion criteria required for admission to the control group. 
7.The Mean Control Group Success Rate column, describes the average (across 100 experiment repetitions) percentage 
of the bidirectional matches in the control group that fulfilled the success criterion. 
8.The Control Group Success Rate Stdev column describes the standard deviation of the control group success rates 
pertaining to 100 repetitions of an experiment. 
9.The Uniqueness Boundary Between Test Group And Control Group column,  describes what threshold was used to split 
the set of all bidirectional matches into a test group and a control group. For example, a value of  2.0 U +μU  would mean 
that the  control group was comprised of all bidirectional matches for which uniqueness exceeded mean uniqueness 
across all bidirectional matches, by more than two standard deviations,  and the control group is comprised of all 
bidirectional matches for which it did not.  
10.The Mean Test Group Size column describes the average (across 100 experiment repetitions) number of the 900 
randomly selected locations that met the inclusion criteria required for admission into the test group. 
11.The Mean Test Group Success Rate column describes the average (across 100 experiment repetitions) percentage of 
bidirectional matches in the test group that fulfilled the success criterion. 
12.The Test Group Success Rate Stdev column describes the standard deviation of the test group success rates pertaining 
to 100 repetitions of an experiment.

4. CONCLUSION

At some point during the course of our past research, we needed to choose a technique for transforming each function 
(that described dissimilarity of an object for which a match was being sought, to each object in the space being 
searched), into a single floating point number that summarized the extent to which the function contained a single well 
defined global minimum that was very different from all of it’s other local minima.  We decided to call this number the 
uniqueness of the global minimum, and planned to use it to compare several dissimilarity of appearance functions 
whenever we needed to decide for which one it was least likely that the global minimum would fail to be a correct 
match. The Equivalence focused work of Quiroz10 inspired us to attempt to formulate a definition of this uniqueness 
assessment as an estimate of the probability of making an error, which in turn led to the uniqueness quantification 
measure described by this paper. 

The relationship between Equivalence and Uniqueness is obvious:  An object is unique if it is equivalent to no other 
objects, or if we decide to allow the transition from “unique” to “not unique” to vary continuously, it is “somewhat 
unique”,  if it is “not very equivalent” to “most” of the competing objects of interest to which it is being compared using 
a metric of interest.  

The  empirical evidence we presented in this paper, suggests uniqueness quantification can be useful, however the 
measure we constructed contains so many implicit assumptions and simplifications that it no longer seems reasonable to 
regard the values it computes as even estimates of probabilities. There seem  however to exist countless precedents for 
the kind of computation it carries out in the Fuzzy Logic community,  and so we decided to consider interpreting the 
values it computes, not as estimates of probabilities but rather as degrees of membership in a fuzzy set of entities which 
for a particular purpose are deemed unique. 

This led us to consider differences and similarities between the concept of probability and the Fuzzy Logic concept of 
degree of membership. Is Fuzzy Logic a branch of Logic, a branch of Mathematics, or merely alternative nomenclature 
for the concepts of Probability?  Compelling arguments disputing the assertion that Fuzzy Logic is mere “Probability In 
Disguise”, were presented by Zadeh14 and Kosko7 . What follows is yet another proposal to reconcile these viewpoints, 
which can be regarded either as our understanding of Zadeh and Kosko’s proposals, or as a small contribution that we 
are able to make to the Fuzzy Logic community because of Zadeh and Kosko’s work.  In either case, we present it 
merely as a point of view that at the present time is satisfactory for our needs and which seems to have a lot in common 
with many other points of view pertaining to this topic. 
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Whenever we need to quickly explain what Fuzzy Logic is and why anyone should care about it,  to a person whose time 
and interest is limited, we say that the answer is still subject to debate, but that we are satisfied that a defensible point of 
view is to regard it as the set of all consequences of modifying the axioms of the Set Theory that underlies all 
Mathematics, to replace the concept of binary set membership with the concept of continuous membership. In other 
words, to transform a theory which only applies to objects that either completely belong or completely do not belong to 
collections of objects called sets, into a theory that allows degree of belonging to vary continuously between 0%  and 
100%. One consequence of doing this is that the concept of binary truth, (which requires that if the truth of a statement 
can be assessed, that statement must be deemed to be either true or false rather than a little of both),  is also replaced by a 
continuous alternative. Proposing such a drastic change to the axioms of Set Theory, is motivated by the observation that 
for any two real world objects, like for example a chair and a table, it is possible to envision arbitrarily many 
intermediate objects and it is unreasonable to insist on claiming that one object is a chair, but another object that is 
almost identical to it is not, merely because they lie on opposite sides of an arbitrarily chosen threshold. 

Extension of binary logic to continuous logic requires  non trivial changes to some  very well entrenched ideas and it is 
not surprising, that such proposals generated controversy among people who care about these things.  Still, although 
creating a new branch of Mathematics by changing an axiom, is less trivial than creating a new game by modifying the 
rules of an old one, it is not unprecedented.  Non-Euclidean Geometry is the outcome of one such effort. Throughout 
history, Mathematics has grown, as new problems in science and technology have emerged. 

In non mathematical contexts, the term “fuzzy” has among other things been used to describe confused thinking. Were 
the pioneers of Fuzzy Logic, deliberately attempting to antagonize their colleagues by incorporating that word into the 
name they gave to their field of study? Why not call it Continuous Logic, or choose some similarly informative name 
which fewer people might be prone to associate with a lack of rigor ? There are many precedents in the history of 
Mathematics, for modifying a useful binary or finite  concept to create a more widely applicable continuous one. Would 
different terminology have made Fuzzy Logic less controversial ? 

A strong case in favor of the assertion that more than mere choice of terminology is responsible for the controversy, can 
be made on the grounds that  assessing degree of membership of an object in one or more sets, is equivalent to 
quantifying its usefulness for one or more purposes, and that doing the latter, regardless of what it is called, seems 
feasible without requiring modifications to Set Theory.  For example, percentages can be used to transform partially true 
statements that would be allowed by Continuous Logic, into  more convoluted statements that are either 100% true or 
100% false. The assertion that a statement like “the tomato I am now eating is a baseball” is 1% true and which also 
communicates that the degree of membership of a specific tomato in the set of all baseballs is 1%, can be replaced by use 
of less jarring but more convoluted statements that are 100% true, and hence for which there is no need to explicitly 
communicate degrees of truth,  like for example,  “the tomato I am now eating will suffice in more than 0% and less than 
1% of situations that require a baseball” or, “the probability that the tomato I am now eating will suffice for completion 
of a randomly chosen task that requires a baseball is greater than 0% and less than 1%” or, “  more than 0% but less than 
1% of the properties of the tomato I am now eating are indistinguishable from those of the average baseball”. 

Arguments in favor of the assertion that Fuzzy Logic, is merely probability in disguise, could point out that percentages 
describing degrees of membership,  and/or usefulness for a purpose can be described in terms of probabilities, as for 
example in the second of the three convoluted tomato statements above. A counter argument presented by Kosko,  is that 
not all percentages need to be interpreted as quantifications of uncertainty, as for example in the first and third of those 
same convoluted tomato related statements. Either way,  there is more to Fuzzy Logic than mere continuity of set 
membership. Zadeh wrote “...for humans it is generally much easier to estimate grades of membership or degrees of 
possibility rather than probabilities...” We interpreted that as a concise articulation of the hypothesis that humans are 
more adept at estimating object properties that can be perceived without accumulation of evidence over time (like for 
example weight) than at estimating frequencies of occurrence of events that stem from those properties (like for example  
probability of a heart attack),  more  adept at classifying objects into broad categories defined by proximity to class 
exemplars which differ qualitatively from one another and pertaining to whose precise definition there is a lack of 
agreement across people (for example categories denoted by natural language terms like thin and obese) than at  
producing quantitative estimates of object properties (like weight in micrograms), and more adept at deciding which of 
two events with very different frequencies of occurrence is more likely than at estimating what those frequencies of 
occurrence are.  Kosko’s references to the success of Fuzzy Systems built using such assumptions can be construed as 
evidence that the hypothesis is correct. 

From this perspective, Fuzzy Logic could be regarded not as Probability in disguise, but rather,  as equivalent to  
Probability without precise universally standardized quantification of likelihood. 
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The term “Fuzzy” is not a bad choice to describe this concept since unlike for the case of computations involving 
experimentally measurable frequencies of occurrence, it is not necessary for  different groups of people that are assessing 
degrees of membership pertaining to the same types of objects in the same types of sets,  to agree on what those degrees 
of membership are in order to build useful systems. They merely need to ensure that the internal representations used by 
any one system are consistent,  in other words to ensure that orderings of relative likelihoods, and relative similarities are 
approximately correct. Success of the “imprecise,  not universally standardized” approach to quantification of uncertainty 
seems prevalent not only among artificial Fuzzy Logic Controllers but also in biological systems,  like for example  
human brains,  which are effective decision makers in spite of the fact that the concepts and natural languages on which 
they rely are to a great extent neither precisely defined nor universally standardized. It is neither an abuse of language 
nor an impediment to good decision making when two people in different environments, have different opinions 
regarding what it means to be a “tall person”.  Since behavioral decisions computed by devices which use these 
computational techniques are useful, and can be obtained using less computation than approaches which attempt to 
quantify uncertainty using experimentally measurable frequencies of occurrence, it is arguably more accurate to regard 
decision making based on Fuzzy Logic , not as imprecise, but rather, as devoid of unnecessary complexity.  While it may 
very well be feasible to also express these  ideas using  the language of probability and convergence of approximations, 
there is a point beyond which the amount of work needed to transform one representation into another is great enough to  
justify  the existence of both, each as Zadeh put it,  for use in the context to which it is best suited. Chinese is not usually 
regarded as Spanish in disguise merely because one can be translated  into the other, nor do Mathematicians insinuate 
that Fourier Transforms are useless because they can after all, be regarded as mere time varying signals in disguise. 

Are all “imprecise not universally standardized” quantifications of uncertainty equally useful ? We suspect the answer is 
no, and that there exist opportunities to classify them and study their properties. It would not be the first time that the 
systematic elimination of properties of concrete ideas yielded opportunities to theoretically analyze concepts that are 
more abstract. Consider for example, the emergence of Abstract Algebra in general, and Group Theory in particular. 

The combination of the above described point of view and our experimental data,  suggests that it would be neither 
unreasonable nor unprecedented to interpret the types of values that are computed by our uniqueness quantification 
algorithm as degrees  of membership  in a fuzzy set. In our particular case, that fuzzy set is comprised of objects which 
for a particular purpose can be regarded as unique.  The associated degrees of membership are values which were 
obtained by estimating some but not all aspects of probabilities and arguably they are not estimates of experimentally 
measurable frequencies of occurrence.  The relationship between values computed by our uniqueness quantification 
measure and actual probabilities seems similar to the relationship between estimates of stereoscopic disparities and 
actual distances to objects. In order for our uniqueness quantification algorithm to be useful, it does not need to compute 
actual probabilities. It merely needs to compute values that can be used to sort problems of interest into roughly the same 
order as knowledge of actual probabilities that they will be solved incorrectly, would allow us to do. A less  rough 
approximation of orderings would of course be preferable if it can be obtained, in other words, this point of view does 
not preclude us from  expecting that the utility of our uniqueness quantification algorithm as a predictor of incorrect 
matches would be further enhanced by introduction of any techniques (for example pertaining to more accurate 
estimation of the variability of the chosen dissimilarity metric as a function of changing environment in which 
measurements are made)  which cause the values it computes to be more comparable to experimentally measurable 
frequencies of occurrence, provided (and here is the hard part) computational tractability is not sacrificed. 

Many stereoscopic vision publications contain images of disparity maps. This one contains none. That is because, this 
paper describes a stereoscopic vision algorithm component,  rather than a complete stereopsis algorithm. We presented a 
preliminary estimate of it’s potential usefulness, that we obtained by integrating it into a very simple environment. In 
future work we plan to explore it’s integration into more complex mechanisms. For example, although many small image 
subsets fail to be unique, we would expect that a sufficiently large union of such subsets could turn out to be highly 
unique, and we are interested in exploring their properties. This approach suggests a more abstract feature extraction 
technique in which the features of interest are not predefined geometric shapes like points lines or circles, or for that 
matter edges and corners, but rather, arbitrarily shaped, not necessarily connected, image subsets that happen to be 
unique in the stereogram being processed. One could argue that edges and corners have historically been a focus of 
attention precisely because they tended to be more unique than other features available at the time, but that it was their 
uniqueness that made them interesting and that this uniqueness is a more fundamental concept, or rather a concept more 
essential to stereoscopic matching,  than the concept of being an edge or the concept of being a corner. Consider for 
example a stereogram  which depicts a scene composed entirely of randomly distributed dots, for example a stereogram 
depicting an arctic ice storm or a random dot stereogram. Using edges and corners as features of interest in that context 
might not turn out to be as useful as using collections of image patches that happened to be unique. 
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The computational approach used by the experiments presented in this paper,  might be useful to builders of systems that 
desire a scalable approach to stereoscopic vision, in which systems benefit from having the means to adjust their 
computational expenditures, for example, from computing only a few matches at low resolution to computing dense high 
resolution disparity maps in regions of interest, or anywhere in between.  Like cooperative9,15  algorithms, this 
computational approach does make use of a group effort,  however that effort is competitive rather than cooperative, in 
the sense that mechanisms which attempt to solve individual single point correspondence problems do not help each 
other.  This computation differs from a collection of independent individual efforts only in that when it is unlikely that all 
members of the group will perform equally well, the existence of the group provides the final stage of the computation 
with a pool from which to choose best performers. Most parts of this type of competitive computation are highly 
parallelizable, with little need for competing processes to communicate with each other. A disadvantage of this approach 
is that there is little opportunity to coordinate efforts of participants,  derive value from a conflict resolution driven 
process of elimination or ensure that competing problem solvers do not contradict each other. For this reason we present 
this approach not as an alternative to cooperative computation but rather as a technique system designers can integrate 
with cooperative approaches to an extent determined by the magnitude of the computational expenditures they are able 
to make and the region in the continuum from sparse to dense disparity map computation that their systems must operate 
in at any given time.

In this paper we described one type of useful incorrect match, namely an incorrect match that is compatible with the 
Epipolar Constraint.  In future work, we are interested in further exploring the concept of “useful incorrect matches” 
along with algorithms that are able to find them without making large computational expenditures. We suspect for 
example, that many incorrect matches that lie on edges that happen to represent depth discontinuities are benign, in the 
sense that their disparity is equal to the correct disparity of an adjacent pixel that is part of a large connected region of 
pixels in which disparity varies smoothly.  The impact of this type of incorrectness is merely a slightly inaccurate 
computation of where depth discontinuities lie. We suspect that the performance of many systems which make use of 
stereoscopic vision would not be adversely impacted by such inaccuracy, especially since, if they require great accuracy 
in a particular region of interest, they can always zoom in their cameras. In summary we expect that many system 
designers could benefit from algorithms which require substantially less computational expenditure than alternatives that 
make few errors, provided the vast majority of the errors made by these undemanding algorithms are benign when the 
algorithms are used for their intended purposes. 
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